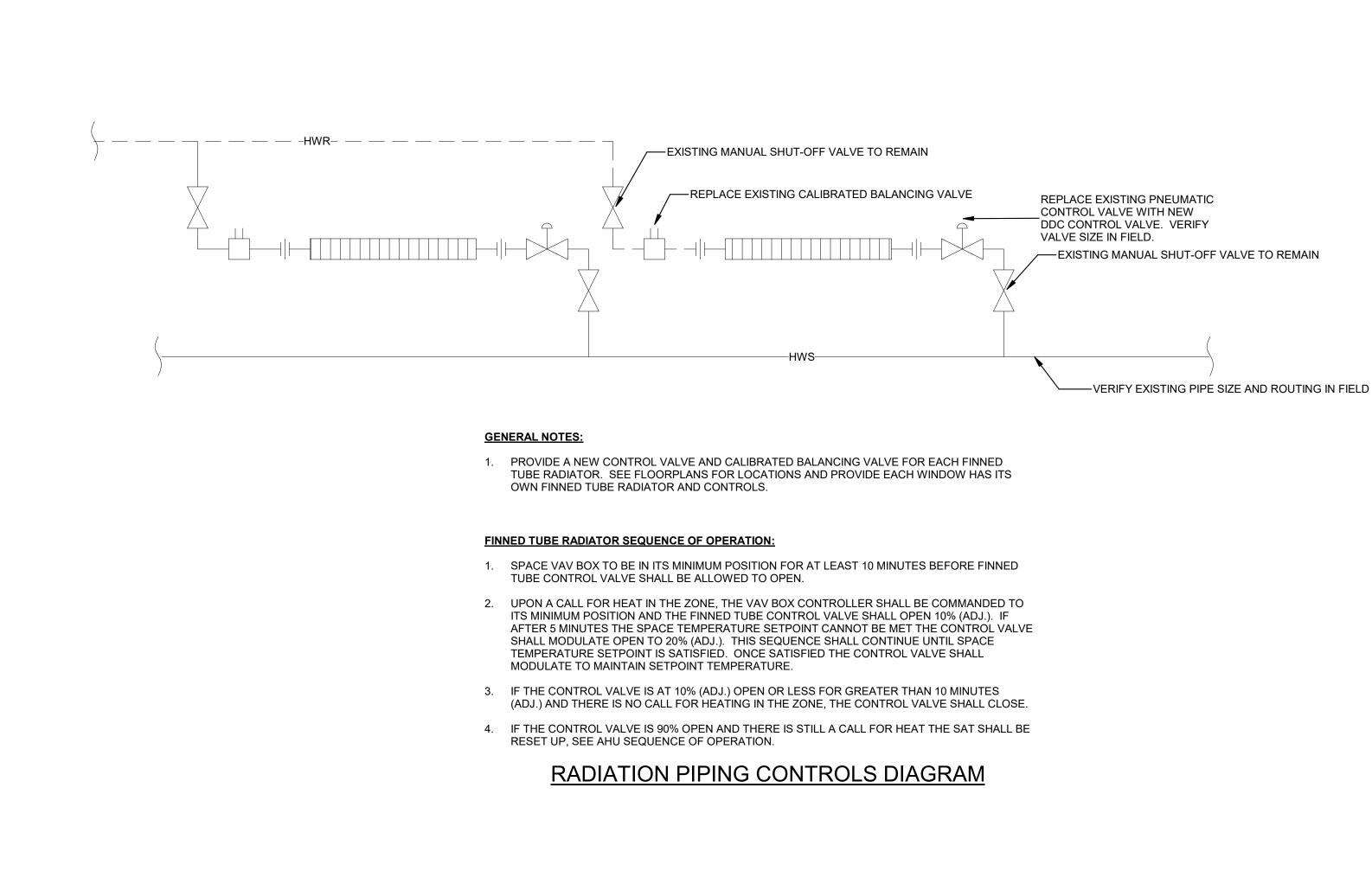
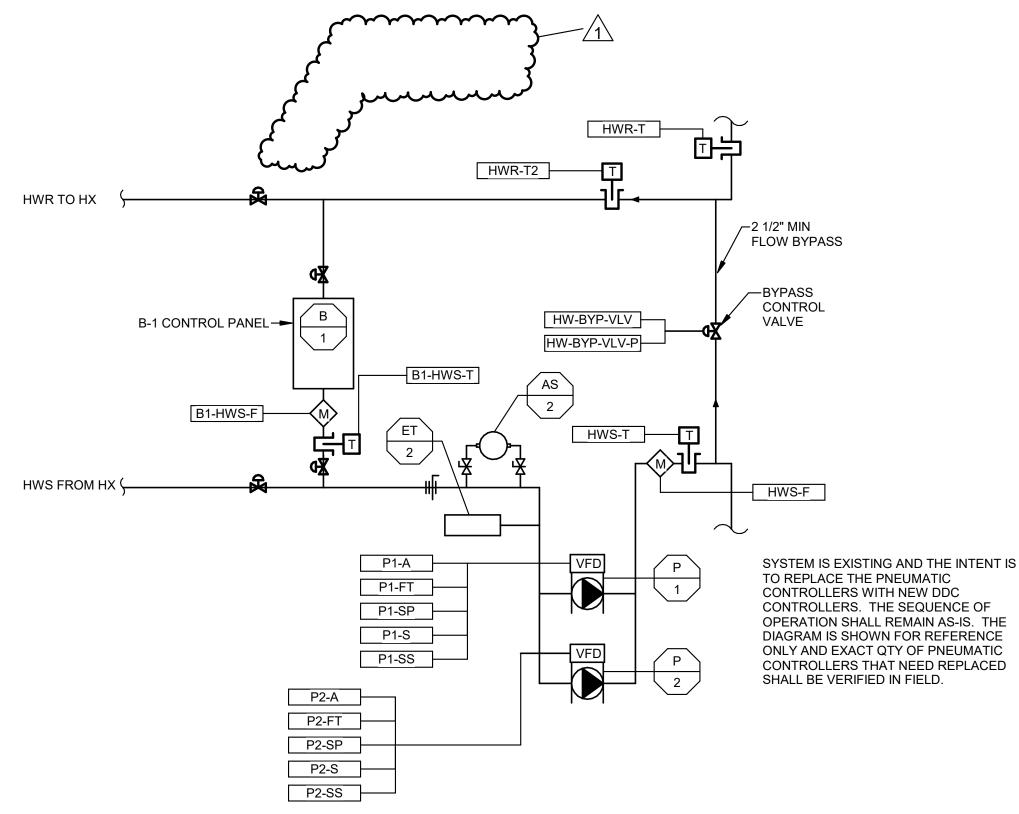


ADDENDUM NO. 1


PROJECT:	Indiana School for the Deaf, Building 8 HVAC Renovation
DAPW PROJECT NO:	49026008-20-040
R&B PROJECT NO:	2148-02
DATE:	10/25/2022
THIS ADDENDUM CONS	ISTS OF (1) 8 - 1/2" X 11" PAGE AND (2) 30" X 42" PAGES.
The following additions,	revisions and modifications are hereby made part of the cont
shall be amended accord	dingly. Acknowledge receipt of addenda on bid form. Failure


The following additions, revisions and modifications are hereby made part of the contract documents, which shall be amended accordingly. Acknowledge receipt of addenda on bid form. Failure of your acknowledgement of receipt of this addendum may result in rejection of your offer.

DRAWINGS

- <u>1. M502:</u>
 - a. Removed an alternate callout on the heating plant schematic that is no longer in scope.
- <u>2. M601:</u>
 - a. Corrected the Air Terminal Unit model number to VRRF.

SIGNED: <u>Corey Lecher</u>

	HOT WATER SYST	EM POIN	TS LIS	ST									
		INPL	JTS	OUTF	PUTS		ALA	٩RM			REPO	ORTS	
						HIGH/TOW LIMIT	SAFETY	MAINTANENCE	ABNORMAL ON/OFF OPEN/CLOSE	ALARM	RUN TIME	TOTALIZATION	NOTES
CONTROL POINT TAG	SYSTEM POINT DESCRIPTION	DI	AI	DO	AO	エ	Ś	Ž	F	AI	Ř	Ĕ F	- NOTES
B1-HWS-F	HOT WATER SUPPLY FLOW		•			•				•			•
B1-HWS-T	HOT WATER SUPPLY TEMERATURE		•			•				•			•
HW-BYP-VLV	BYPASS VALVE				•								
HW-BYP-VLV-P	BYPASS VALVE POSITION												
HWR-T	HOT WATER RETURN TEMPERATURE BEFORE BYPASS		•			•				•			•
HWR-T2	HOT WATER RETURN TEMPERATURE AFTER BYPASS		•			•				•			•
HWS-F	HOT WATER SYSTEM SUPPLY FLOW		•										
HWS-T	HOT WATER SUPPLY TEMPERATURE		•			•				•			•
P1-A	VFD ALARM	•							•	•	•		
P1-FT	VFD FAULT	•								•			
P1-S	STATUS	•							•	•	•		•
P1-SP	VFD SPEED				•				•	•	•		•
P1-SS	ENABLE/DISABLE			•					•	•	•		•
P2-A	VFD ALARM	•							•	•	•		•
P2-FT	VFD FAULT	•								•			
P2-S	STATUS	•							•	•	•		•
P2-SP	VFD SPEED				•				•	•	•		•
P2-SS	ENABLE/DISABLE			•					•	•	•		•

HEATING PLANT BOILERS AND HOT WATER PUMPS (VARIABLE SPEED PRIMARY) - ALTERNATE

<u>GENERAL</u>

THE BOILER PLANT CONSISTS OF MULTIPLE HIGH-EFFICIENCY CONDENSING BOILERS, CONSTANT SPEED PRIMARY HOT WATER PUMPS, VARIABLE SPEED SECONDARY HOT WATER PUMPS, A BUFFER TANK, AND A MINIMUM FLOW BYPASS VALVE.

THE HOT WATER SUPPLY TEMPERATURE SETPOINT SHALL INITIALLY BE 130 DEG F AND SHALL CHANGE BASED ON THE FOLLOWING RESET SCHEDULE:

THE SETPOINT SHALL BE 130 DEG F AT AN OUTSIDE AIR DRY BULB REFERENCE TEMPERATURE OF 40 DEG F AND SHALL BE RESET TO 110 DEG F AT AN OUTSIDE AIR DRY BULB REFERENCE TEMPERATURE OF 60 DEG F. THE SETPOINT SHALL BE RESET LINEARLY WITH OUTSIDE AIR TEMPERATURE WHEN THE REFERENCE TEMPERATURE IS BETWEEN 40 AND 60 DEG

THE EMCS SHALL MONITOR THE HOT WATER SUPPLY TEMPERATURE INDEPENDENTLY OF THE BOILER CONTROL SYSTEM AND ANNUNCIATE AN ALARM IF THE HOT WATER SUPPLY TEMPERATURE VARIES FROM SETPOINT BY MORE THAN 5 DEG F (ADJ) FOR MORE THAN 20 MINUTES (ADJ).

PROVIDE A TEMPERATURE SENSOR TO MONITOR PRIMARY HOT WATER SUPPLY TEMPERATURE. PROVIDE A TEMPERATURE SENSOR TO MONITOR PRIMARY HOT WATER RETURN TEMPERATURE.

PROVIDE A TEMPERATURE SENSOR TO MONITOR SECONDARY HOT WATER RETURN TEMPERATURE. BOILER CONTROL

EACH BOILER SHALL BE FURNISHED WITH INTERNAL CONTROLS CAPABLE OF INDIVIDUAL COMBUSTION, FIRING RATE, AND TEMPERATURE CONTROLS, AS WELL AS SEQUENCING/STAGING OF MULTIPLE BOILERS. THE BOILER CONTROL SYSTEM SHALL HAVE A FULLY EDITABLE USER INTERFACE SET-UP VIA POINT AND CLICK ON A STANDARD WINDOWS SCREEN. IT SHALL NOT REQUIRE SPECIAL SOFTWARE TOOLS OR AN ENERGY MANAGEMENT CONTROL SYSTEM (EMCS) MANUFACTURER'S TECHNICIAN TO OPERATE.

THE LEAD/LAG DESIGNATIONS OF EACH BOILER SHALL BE ROTATED BY THE BOILER CONTROL PANEL TO MAINTAIN ROUGHLY EQUAL RUN TIMES ON EACH MACHINE. THE INTERVAL OF ROTATION SHALL BE USER SELECTABLE THRU THE EMCS, AND THE USER SHALL BE ABLE TO OVERRIDE THE DESIGNATION OF LEAD/LAG/STANDBY BOILER THRU THE EMCS.

THE ACTIVATION OF THE BOILER CONTROL PANEL SHALL BE PERFORMED BY THE EMCS. ONCE FLOW IS PROVEN THROUGH THE BOILER MANUFACTURER'S SUPPLIED FLOW SWITCH, THE EMCS SHALL ACTIVATE THE BOILER CONTROL PANELS. ONCE ENABLED, CONTROL OF EACH BOILER'S INTERNAL OPERATION SHALL BE ACCOMPLISHED LOCALLY BY THE BOILER CONTROL PANEL. BOILER CONTROL PANEL SHALL OPERATE AND STAGE BOILERS IN THE MOST EFFICIENT WAY POSSIBLE. THE ONLY REMOTE DISABLE SIGNAL FROM THE EMCS SHALL BE VIA OPERATOR'S MANUAL COMMAND.

THE EMCS SHALL MONITOR THE STATUS OF ALL BOILERS INDIVIDUALLY AND ANNUNCIATE AN ALARM UPON ANY BOILER FAILURE ALARM.

SECONDARY HOT WATER PUMP CONTROL (50% PUMPS)

PRIMARY HOT WATER PUMP CONTROL

UPON A CALL FOR MECHANICAL HEATING, THE EMCS SHALL START THE LEAD PRIMARY HOT WATER PUMP. THE ENABLE SIGNAL SHALL BE WITHHELD FOR 1 MINUTE FROM BOILER ENABLE. ONCE MECHANICAL HEATING IS NO LONGER REQUIRED, THE EMCS SHALL DISABLE THE PRIMARY HOT WATER PUMP.

THE EMCS SHALL MONITOR THE STATUS OF THE PRIMARY HOT WATER PUMPS VIA INDEPENDANT CURRENT SENSORS FOR EACH PUMP. UPON FAILURE OF THE PRIMARY HOT WATER PUMP, THE BAS SHALL ANNUNCIATE AN ALARM AND AUTOMATICALLY DISABLE THE ASSOCIATED BOILER.

UPON RECEIVING A START COMMAND FROM THE EMCS, THE SYSTEM SHALL START THE LEAD SECONDARY HOT WATER PUMP AND MODULATE THE SPEED OF THE LEAD PUMP TO MAINTAIN THE SYSTEM DIFFERENTIAL PRESSURE SETPOINT (ESTABLISHED AT THE TIME OF SYSTEM BALANCING) AS MEASURED BY EACH BUILDING'S ASSOCIATED DIFFERENTIAL PRESSURE TRANSMITTER.

WHEN THE LEAD OPERATING PUMP SPEED REACHES 90% OF FULL SPEED, THE EMCS SHALL START THE LAG PUMP. THE LEAD PUMP SHALL REMAIN UNDER THE CONTROL OF THE RESPECTIVE DIFFERENTIAL PRESSURE SIGNAL WHILE THE LAG PUMP SPEED RAMPS UP. WHEN BOTH PUMPS ARE RUNNING AT THE SAME SPEED, THE EMCS SHALL PLACE BOTH PUMPS UNDER THE CONTROL OF THE DIFFERENTIAL PRESSURE SIGNAL. DURING MULTIPLE PUMP OPERATION, PUMP SPEED SHALL MODULATE IN UNISON UNTIL THE LOAD DROPS BELOW 40% OF THE COMBINED CAPACITY OF THE OPERATING PUMPS. ON A DECREASE IN LOAD BELOW 40% OF THE COMBINED CAPACITY OF THE OPERATING PUMPS, THE LEAD PUMP SHALL BE TAKEN OUT OF SERVICE AS FOLLOWS: WHILE THE LAG PUMP REMAINS UNDER THE CONTROL OF THE DIFFERENTIAL PRESSURE SIGNAL, THE SPEED OF THE LEAD PUMP SHALL BE RAMPED DOWN TO THE MINIMUM, AND THE PUMP SHALL STOP. THE LAG PUMP SHALL THEN BE DESIGNATED AS LEAD PUMP, EFFECTIVELY SWITCHING LEAD/LAG DESIGNATIONS TO MAINTAIN ROUGHLY EQUAL RUN TIMES.

THE EMCS SHALL TRACK AND LOG PUMP RUN TIME. THE PUMP WITH THE LOWEST NUMBER OF RUN HOURS SHALL BE DEFINED AS THE LEAD PUMP. THE PUMP WITH GREATEST NUMBER OF RUN HOURS SHALL BE DEFINED AS THE LAG PUMP. THE EMCS SHALL ALTERNATE DESIGNATION OF LEAD/LAG BASED ON AN OWNER DEFINED RUN TIME. UPON FAILURE OF THE LEAD PUMP TO START, AN ALARM SHALL BE SENT TO THE OPERATOR'S WORKSTATION AND THE

LAG PUMP SHALL START AND CONTINUE VARIABLE SPEED OPERATION. UPON A VARIABLE FREQUENCY DRIVE ALARM, THE LEAD PUMP SHALL STOP. AN ALARM SHALL BE SENT TO THE OPERATOR'S WORKSTATION, AND THE LAG PUMP SHALL START AND CONTINUE OPERATION.

SECONDARY HOT WATER PUMP CONTROL (REDUNDANT PUMPS) UPON RECEIVING A START COMMAND FROM THE EMCS, THE SYSTEM SHALL START THE LEAD SECONDARY HOT WATER PUMP AND MODULATE THE SPEED OF THE LEAD PUMP TO MAINTAIN THE SYSTEM DIFFERENTIAL PRESSURE SETPOINT (ESTABLISHED AT THE TIME OF SYSTEM BALANCING) AS MEASURED BY EACH BUILDING'S ASSOCIATED DIFFERENTIAL PRESSURE TRANSMITTER.

THE EMCS SHALL TRACK AND LOG PUMP RUN TIME. THE PUMP WITH THE LOWEST NUMBER OF RUN HOURS SHALL BE DEFINED AS THE LEAD PUMP. THE PUMP WITH GREATEST NUMBER OF RUN HOURS SHALL BE DEFINED AS THE LAG PUMP. THE EMCS SHALL ALTERNATE DESIGNATION OF LEAD/LAG BASED ON AN OWNER DEFINED RUN TIME. UPON FAILURE OF THE LEAD PUMP TO START, AN ALARM SHALL BE SENT TO THE OPERATOR'S WORKSTATION AND THE LAG PUMP SHALL START AND CONTINUE VARIABLE SPEED OPERATION.

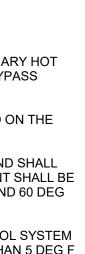
UPON A VARIABLE FREQUENCY DRIVE ALARM, THE LEAD PUMP SHALL STOP. AN ALARM SHALL BE SENT TO THE OPERATOR'S WORKSTATION, AND THE LAG PUMP SHALL START AND CONTINUE OPERATION. HOT WATER DIFFERENTIAL PRESSURE TRANSMITTER

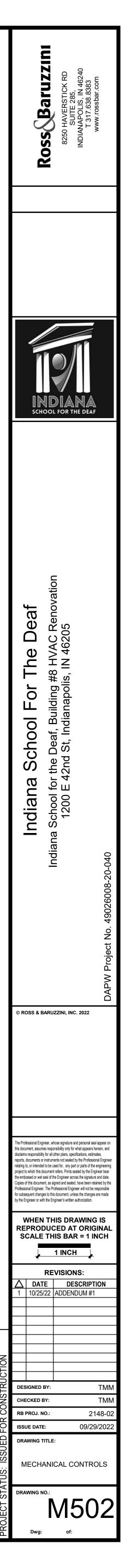
THE EMCS SHALL CONTINUOUSLY SCAN AND COMPARE THE DIFFERENTIAL PRESSURE TRANSMITTER INPUTS TO SETPOINT AND CONTROL TO THE LEAST SATISFIED BUILDING. IN THE EVENT OF A SYSTEM DIFFERENTIAL PRESSURE FAILURE DUE TO A PUMP OR VFD FAULT, THE EMCS SHALL AUTOMATICALLY START THE NEXT VARIABLE SPEED PUMP/VFD SET IN SEQUENCE AND CONTINUE VARIABLE SPEED OPERATION.

SYSTEM MONITORING

IN THE EVENT OF THE FAILURE OF A BUILDING SENSOR/TRANSMITTER, ITS PROCESS VARIABLE SIGNAL SHALL BE REMOVED FROM THE SCAN/COMPARE PROGRAM AND AN ALARM SHALL BE ANNUNCIATED AT THE EMCS. THE BUILDING NUMBER CORRESPONDING TO THE FAILED SENSOR/TRANSMITTER SHALL BE DISPLAYED ON THE OPERATOR INTERFACE OF THE EMCS.

IN THE EVENT OF FAILURE TO RECEIVE ALL BUILDING PROCESS VARIABLE SIGNALS, ALL OPERATING VFDS AT THE TIME OF THE FAILURE SHALL MAINTAIN THEIR CURRENT SPEED AT TIME OF SENSOR FAILURE. RESET SHALL BE AUTOMATIC UPON CORRECTION OF THE BUILDING FAILURE. PUMP OR VFD FAULT SHALL BE CONTINUOUSLY SCROLLED THROUGH THE DISPLAY ON THE OPERATOR INTERFACE OF


THE EMCS UNTIL THE FAULT HAS BEEN CORRECTED AND THE CONTROLLER HAS BEEN MANUALLY RESET. BOILER MINIMUM FLOW BY-PASS VALVE CONTROL


FOLLOWING THE CONFIRMED START OF THE LEAD BOILER AND WHENEVER SYSTEM IS ENABLED, THE EMCS SHALL MODULATE THE BOILER MINIMUM FLOW BY-PASS VALVE TO MAINTAIN MINIMUM REQUIRED FLOW THROUGH ANY OPERATING BOILERS AS SPECIFIED BY THE BOILER MANUFACTURER. SINGLE BOILER MINIMUM FLOW RATE SHALL BE AS NOTED IN BOILER SCHEDULE. THE FLOW THROUGH EACH BOILER SHALL BE CONTINUOUSLY MEASURED BY THE EACH BOILER'S RESPECTIVE FLOW

METER. THE BOILER MINIMUM FLOW BY-PASS VALVE SHALL BE MODULATED TO THE FULLY OPEN POSITION WHEN THE SYSTEM IS SHUTDOWN. THIS SHALL BE DONE TO PREVENT WATER HAMMER WHEN A PUMP IS STARTED AND TO ALLOW FOR MINIMUM FLOW IN THE EVENT THE BOILER CALLS FOR PUMP OPERATION.

BOILER ROOM CARBON MONOXIDE SENSING:

PROVIDE SPACE CARBON MONOXIDE SENSOR TO MONITOR CO LEVELS AND PROVIDE LOCAL AND REMOVE ALARMS PER SPECIFICATION SECTION 230900 - HVAC INSTRUMENTATION AND CONTROL.

NOT 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	SOUND PROVID PROVID ELECTR UNIT TO PROVID UNIT SP PROVID	ENCE SPECIFIC I POWER LEVEL I E WITH INVERTI E UNIT WITH SIN ICAL CONTRAC BE MOUNTED (E PRICING UND LITS SHALL BE E PRICING UND E HYGROMATIK	Ratings Er-Read Ngle Poi Tor to P Dn Equip Er dorm Sized to Er gym <i>P</i>
11.	PROVID	E PRICING UND	ER COMM
MA	RK		
ID	#	MFR.	MOD
AHU	1	YORK	XTI-60
AHU	2	YORK	XTI-60
AHU	4	YORK	XTI-54
AHU	5	YORK	XTI-54
AHU	6	YORK	XTI-69
AHU	7	YORK	XTI-57
AHU	8	YORK	XTI-60
AHU	9	YORK	XTI-54

NOTES	<u>6:</u>		
MA	RK		
ID	#	CAPACI	TY (MBH)
U	#	SENS.	тот
AHU	1	345	506
AHU	2	373	546
AHU	4	-	-
AHU	5	-	-
AHU	6	428	615
AHU	7	312	458
AHU	8	383	567
AHU	9	259	411

<u>NOTE</u> 1		OUND POWER LEVEL RAT
2.	-	ROVIDE WITH INVERTER-
3. 4.		JSED DISCONNECT SWIT
5. 6.	PI	ROVIDE AS COMMONS AF
0.		
ID	#	MFR.
WRF	1	GREENHECK
WRF WRF	1 2	GREENHECK GREENHECK
	•	
WRF	2	GREENHECK
WRF WRF	2 6	GREENHECK GREENHECK

AIR TERMINAL UNIT SCHEDULE														
OTES: 1. MAX TOTAL PRESSURE DROP SHALL INCLUDE BOX (WHERE APPLICABLE). 2. NOT USED. 3. ACCESSIBILITY IS REQUIRED FOR EACH VTU BOX. DUCTWORK SHALL BE ADDED AND/OR ORIENTATION CHANGED TO ACCOMMODATE FIELD CONDITIONS. 4. ATU WITH A VCWC ID HAVE EXISTING HOT WATER COILS. THE EXISTING CONTROL VALVES SHALL BE REPLACED WITH NEW INCLUDING DDC ACTUATORS.														
MARK ID #		MFR. MODEL		ROUND DUCT INLET SIZE (IN)	OUTLET DUCT SIZE (IN)	AIRFLOW RANGE (MAX/MIN CFM)	MAX APD (IN WC)	NC	NOTES					
VCCC	08	TRANE	VRRF	8	8	700 / 490	0.67	32	1, 3					
VCCC	12	TRANE	VRRF	8	8	1000 / 710	0.46	29	1, 3					
VCCC	20	TRANE	VRRF	10	10	1600 / 1010	0.52	28	1, 3					
VCCC	30	TRANE	VRRF	10x18	10x18	2400 / 1610	0.24	26	1, 3					
VCWC	12	TRANE	VRRF	10	10	1000 / 710	0.55	29	1, 3, 4					
VCWC	30	TRANE	VRRF	10x18	10x18	2400 / 1610	0.51	28	1, 3, 4					
VTCC	04	TRANE		6	6	200 / 100	0.11	18	1, 3					
VTCC	05	TRANE	VRRF	6	6	350 / 210	0.31	29	1, 3					
VTCC	08	TRANE		8	8	700 / 560	0.4	33	1, 3					

				HUI	MIDIFI	ER SCHE	DULE					
UNIT NUMBER	LOCATION	HUMIDIFIER CONFIGURATION	TOTAL AIRFLOW (CFM)	MIN.OA (CFM)	DESIGN DB/WB (DEG F)	HUMIDIFICATION STEAM (LBS/HR)	SOURCE STEAM (PSI)	DUCT WIDTH (IN)	DUCT HEIGHT (IN)	ABSORPTION DISTANCE-MAX (IN)	BASIS OF DESIGN	NOTES
AHU-1	Roof	HORIZ. DUCT	10650	5050	70/55.6	127	2	93	60	36	HygroMatik DDS	1,2,3,4,5
AHU-2	Roof	HORIZ. DUCT	11600	5500	70/55.6	139	2	93	60	36	HygroMatik DDS	1,2,3,4,5
	1											1
AHU-6	Roof	HORIZ. DUCT	13600	5000	70/55.6	126	2	93	70	36	HygroMatik DDS	1,2,3,4,6
AHU-7	Roof	HORIZ. DUCT	9800	4800	70/55.6	121	2	93	54	36	HygroMatik DDS	1,2,3,4,5
AHU-8	Roof	HORIZ. DUCT	11500	6200	70/55.6	156	2	93	60	36	HygroMatik DDS	1,2,3,4,5
AHU-9	Roof	HORIZ. DUCT	8550	4000	70/55.6	101	2	93	54	36	HygroMatik DDS	1,2,3,4,5
NOTES:												
	1. INSTALL HUMIDIFIER D	ISTRIBUTORS IN AIR D	UCT. SEAL AROU	ND DISTRIBUT	OR AIR TIGHT.	VERIFY EXACT DIMEN	NSIONS.					
	2. HUMIDIFIER MODULAT	ING ELECTRIC ACTUAT	OR TO ACCEPT ()-10 VDC CONT	ROL SIGNAL F	ROM BAS SYSTEM.						
	3. PROVIDE WALL MOUN	TED MODULATING CON	TROL, DUCT MO	JNTED HI-LIMIT	HUMIDISTAT	AND AIR PROVING SW	/ITCH.					
	4. PROVIDE STAINLESS S	TEEL DRAIN PAN UNDE	ER HUMIDIFIER D	ISTRIBUTORS.								
	5. PROVIDE AS DORM AH	IU ALTERNATE.										
	6. PROVIDE AS COMMON	S AHU ALTERNATE.										

w

AIR HANDLING UNIT SCHEDULE (1)

MENT COMPONENT FOR ELECTRICAL DATA WHEN MULTIPLE POWER CONNECTIONS ARE REQUIRED. GS SHOWN IN DECIBELS, REFER TO 10(-12) WATTS CALCULATED PER AMCA STANDARD 301.

ADY OR INVERTER-DUTY MOTOR FOR VARIABLE SPEED OPERATION. OINT ELECTRICAL CONNECTION.

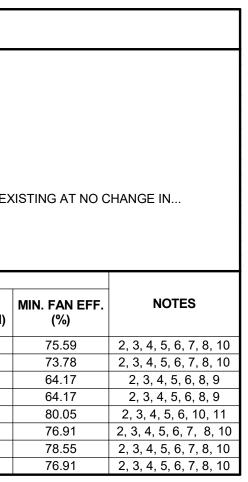
PROVIDE VFD'S AND NON-FUSED DISCONNECT SWITCHES. JIPMENT RAIL OF SUFFICIENT HEIGHT TO ALLOW FULL SIZE CONDENSATE TRAP FROM UNIT. RM AHU ALTERNATE.

O ALLOW TO FIT THRU A STANDARD 36" SINGLE DOOR. IF SECTIONS ARE TOO LARGE TO FIT THRU DOOR THEN WALL LOUVER AND DUCTWORK TO BE REMOVED AND REINSTALLED TO MATCH EXISTING AT NO CHANGE IN... /I AHU ALTERNATE.

NODEL DIRECT STEAM INJECTION HUMIDIFIER. ABSORPTION DISTANCE TO BE NO GREATER THAN 36", VERIFY DUCT SIZE WITH EXISTING CONDITIONS. MONS AHU ALTERNATE.

					MAX				SUPPLY FAN			
DEL	TYPE	LOCATION	MIN. OA (CFM)	MAX SIZE	OPERATING	TOTAL	STATIC P	RESSURE		MAX WHEEL	MAX FAN	м
				(LxWxH)	WEIGHT (LBS)	AIRFLOW (CFM)	TSP (IN WC)	ESP (IN WC)	DRIVE	SIZE (IN)	SPEED (RPM)	
60x90	SPLIT DX	ROOF	5050	10'10x7'9x5'0	4200	10650	3.51	2.5	BELT	20	1777	
60x90	SPLIT DX	ROOF	5500	10'10x7'9x5'0	4200	11600	3.6	2.5	BELT	20	1856	
54x90	HTG ONLY	ROOF	5050	8'8x7'9x4'6	3200	10000	1.65	1.0	BELT	20	1438	
54x90	HTG ONLY	ROOF	5050	8'8x7'9x4'6	3200	10000	1.65	1.0	BELT	20	1438	
69x93	SPLIT DX	ROOF	5000	11'4x7'9x5'10	5100	13600	3.74	2.5	BELT	25	1316	
57x90	SPLIT DX	ROOF	4800	10'9x7'4x4'6	4200	9800	3.3	2.5	BELT	20	1681	
60x90	SPLIT DX	ROOF	6200	10'10x7'9x5'0	4500	11500	3.75	2.5	BELT	22	1523	
54x90	SPLIT DX	ROOF	4000	10'4x7'9x4'6	4100	8550	3.3	2.5	BELT	20	1681	

	AIR HANDLING UNIT SCHEDULE (3)														
	DIRECT EXPANSION COIL														
I) MAX FACE EAT LAT (DB / WB REFRIGERAN # OF MAX PD AIR CONDE															
TAL	VELC. (FPM)	DB (°F)	WB (°F)	°F)	T TYPE	CIRCUITS	(IN WC)	UNIT ID #							
06	415	84.48	68.62	53.2 / 52.6	R-410A	20	0.65	CU-1							
46	450	84.48	68.62	53.3 / 52.7	R-410A	20	0.68	CU-2							
-		-	-	-											
-		-	-	-											
15	426	82.35	67.21	51.9 / 51.5	R-410A	19	0.81	CU-6							
58	380	84.80	68.83	53.9 / 53.1	R-410A	16	0.50	CU-7							
67	446	84.5	68.6	52.2 / 51.8	R-410A	20	0.85	CU-8							
11	353	84.36	68.54	55.0 / 54.1	R-410A	20	0.42	CU-9							


<u>NOTE</u>	-
MA	RK
ID	
AHU	

							FAN	SCHED	OULE																	
			ATTS CALCULATED PER AMCA PEED OPERATION. PROVIDE V		AND ROOF EQ	UIPMENT SUPP	ORTS.																			
D INS	CH TO BE PROVIDED AN TALLED BY ELECTRICAL J ALTERNATE.	D INSTALLED BY MANUFACTU _ CONTRACTOR.	JRER.																							
	ALTERNATE.					1			1																	
	MODEL	TYPE	LOCATION	SERVICE	DRIVE	AIRFLOW	ESP (IN WC)	MAX FAN	MOTOR	MIN STATIC	DESIGN DRIVE	MIN FAN EFF.		MAX SO	UND PO	WER RA		NLET / C	OUTLET))	MAX WEIGHT	E		ICAL DAT	A	NOTES
	MODEL		LOCATION	SERVICE	DRIVE	(CFM)		SPEED (RPM)	SPEED (RPM)	EFF (%)	LOSS (%)	GRADE	63	125	250	500	1000	2000	4000	8000	(LBS)	AMPS	HP	VOLTS	PHASE	NOTES
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	11,600	0.5	656	1725	43	4.0	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 6
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	11,600	0.5	656	1725	43	4.0	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 6
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	11,600	0.5	656	1725	41	4.0	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 5
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	11,600	0.5	656	1725	43	4.0	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 6
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	11,600	0.5	656	1725	43	4.0	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 6
	SBE-3H42-30	SIDEWALL BELT DRIVE	PENTHOUSE SIDEWALL	PENTHOUSE	BELT	8,550	0.5	656	1725	41	4.2	65	90	88	88	85	81	77	72	69	550	4.8	3	460	3	1, 2, 3, 4, 6

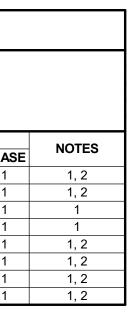
					PUMP	SCHEDU	JLE							
<u>NOTE</u> 1. 2.	ELI	ECTRICAL CONTRACTO		E MOTOR STARTER AND DISCONNECT ERNATE.	SWITCH.									
MA	RK	MFR.	MODEL	ТҮРЕ	LOCATION	SERVICE	WATER FLOW	TDH (FT)	MIN EFF (%)	MOTOR		ELECTRIC		
MARK ID # P 1					•=====	(GPM)			SPEED (RPM)	AMPS	WATTS	VOLTS	PHAS	
Ρ	1	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-1	22	6	94%	2950	1.1	.125	120	1
Р	2	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-2	22	6	94%	2950	1.1	.125	120	1
Р	4	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-4	25	10	94%	2950	1.1	.125	120	1
Р	5	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-5	25	10	94%	2950	1.1	.125	120	1
Р	6	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-6	27	6	94%	2950	1.1	.125	120	1
Р	7	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-7	22	6	94%	2950	1.1	.125	120	1
Р	8	BELL & GOSSETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-8	22	6	94%	2950	1.1	.125	120	1
Р	q	BELL & GOSSETT	NRF-22	INLINE CENTRIFUGAL	ROOF	AHU-9	18	13	94%	2940	0.8	.92	120	1

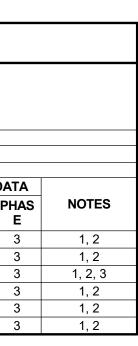
1. 2. 3.	MANUI		ROVIDE UNIT MOUNTED DORM AHU ALTERNATE.			
ID	ARK #	MFR.	MODEL			
CU	1	YORK	J50YDC00A			
CU	2	YORK	J50YDC00A			
CU	6	YORK	J50YDC00A			
CU 7		YORK	J50YDC00A			
CU	8	YORK	J50YDC00A			
CU	9	YORK	J40YDC00A			

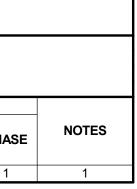
<u>NOT</u>	NOTES: 1. PROVIDE WALL SLEEVE ADAPTER TO UTILIZE EXISTING WALL OPENINGS.																					
M	ARK					TOTAL				CO	oling i	DATA				HEA	TING DA	ТА	E	ELECT	RICAL DA	TA
ID	#	MFR.	MODEL	ТҮРЕ	LOCATION	TOTAL AIRFLOW (CFM)	MIN. OA (CFM)	AMBIE	NT (°F)	EAT	Г (°F)	TOTAL (MBH)	MIN EFF (SEER)	AMBIE NT (°F)		TYPE	CAP (MBH)	CONTROL	AMPS	HP	VOLTS	PHAS
						(,		DB	WB	DB	WB		(OLLIX)	DB	(' '							1
PTAC	; 1	FRIEDRICH	PZE12R3SB-A	ELECTRIC HEAT	*SEE PLANS	470	75	95	72	78	65	12	10.6	-5	50	ELECTRIC	12.3	REMOTE TSTAT	5.92	0.1	265	1

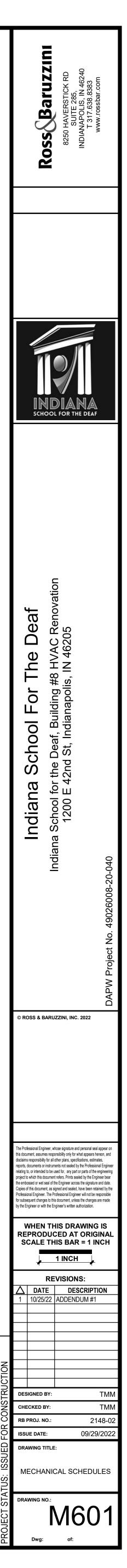
				AIR H	ANDLIN	IG UNIT S	CHEDU	ILE (2)							
NOTES	<u>:</u>														
MA	RK	HEATING HOT WATER COIL													
ID	#	CAPACITY	MAX FACE		LAT (°F)	WATER FLOW			POWe	MA	X PD				
ID	#	(MBH)	VELC. (FPM)	EAT (°F)			EWT (°F)	LWT (°F)	ROWS	AIR (IN WC)	WATER (FT)				
AHU	1	345	395	42	70	22	180	147	1	0.03	1.9				
AHU	2	356	428	42	70	22	180	146.8	1	0.03	1.9				
AHU	4	1238	410	-5	95	25	180	130.9	3	0.22	4.6				
AHU	5	1238	410	-5	95	25	180	130.9	3	0.22	4.6				
AHU	6	406	421	48	70	27	180	149.1	1	0.03	2.6				
AHU	7	326	381	42	72.4	22	180	149.6	1	0.02	2.0				
AHU	8	355	424	42	70	22	180	146.9	1	0.03	1.9				
AHU	9	290	350	42	72.9	18	180	146.9	1	0.02	1.4				

	AIR HANDLING UNIT SCHEDULE (4)													
-		TEDO										ELECTRICAL DA	<u></u>	
•		FILTERS MAX SOUND POWER RATING (DISCHARGE / INLET / RADIATED) PRE OCTAVE BAND (HZ)										ELECTRICAL DA		
#	ТҮРЕ	DESIGN APD (IN WC)	63	125	250	500	1000	2000	4000	8000	FULL LOAD	HP	VOLTS	PHASE
1	MERV 8	0.2	92	90	89	88	88	87	85	85	24.3	20	480	3
2	MERV 8	0.2	93	92	91	90	90	88	86	85	24.3	20	480	3
4	MERV 8	0.2	88	87	86	85	85	81	78	78	12.5	10	480	3
5	MERV 8	0.2	88	87	86	85	85	81	78	78	12.5	10	480	3
6	MERV 8	0.2	96	95	94	93	93	91	86	86	24.3	20	480	3
7	MERV 8	0.2	93	92	91	90	90	89	86	85	17.7	15	480	3
8	MERV 8	0.2	93	92	91	90	90	88	86	85	24.3	20	480	3
9	MERV 8	0.2	91	90	89	89	88	87	84	83	17.7	15	480	3


CONDENSING UNIT SCHEDULE


D NON-FUSED DISCONNECT SWITCH. REUSE EXISTING ROOF CURB.


PROVIDE PRICING AS COMMONS AHU ALTERNATE.


	LOCATION				COOLING	OA TEMP		COMPR	COMPRESSOR		CONDENSER		UNIT EER	REFRIG	ELECTRICAL DAT			
		SERVICE		DESIGN AMB	MIN AMB (°F)	QTY	TONS		AIR COOLED		FLA	VOLTS			PH/			
			CAP (MBH)	(°F)			EA	QTY FANS	HP EA	NOM RPM	FLA	VULIS						
	ROOF	AHU-1	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	3			
	ROOF	AHU-2	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	3			
	ROOF	AHU-6	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	3			
	ROOF	AHU-7	538.9	95	45	2	25	4	1.5	1140	13.4	R410A	74	480	3			
	ROOF	AHU-8	538.9	95	45	2	25	4	1.5	1140	13.4	R410A	74	480	3			
	ROOF	AHU-9	453.5	95	45	2	20	4	1.5	1140	13.8	R410A	53	480	3			

PACKAGE TERMINAL AIR CONDITIONER SCHEDUILE - ALTERNATE

